
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260635902

Improved GPU/CUDA based parallel weather and research forecast (WRF)

Single Moment 5-class (WSM5) cloud microphysics

Article in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing · August 2012

DOI: 10.1109/JSTARS.2012.2188780

CITATIONS

52
READS

2,485

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Polar Microwave Sounder SNO-Estimated Inter-calibration View project

The Global Space-Based Inter-Calibration System (GSICS) project initiated by the World Meteorological Organization (WMO) Space Programme View project

Jarno Mielikainen

University of Wisconsin–Madison

80 PUBLICATIONS 2,060 CITATIONS

SEE PROFILE

Mitch Goldberg

National Oceanic and Atmospheric Administration

228 PUBLICATIONS 12,286 CITATIONS

SEE PROFILE

All content following this page was uploaded by Jarno Mielikainen on 27 April 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/260635902_Improved_GPUCUDA_based_parallel_weather_and_research_forecast_WRF_Single_Moment_5-class_WSM5_cloud_microphysics?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/260635902_Improved_GPUCUDA_based_parallel_weather_and_research_forecast_WRF_Single_Moment_5-class_WSM5_cloud_microphysics?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Polar-Microwave-Sounder-SNO-Estimated-Inter-calibration?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Global-Space-Based-Inter-Calibration-System-GSICS-project-initiated-by-the-World-Meteorological-Organization-WMO-Space-Programme?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jarno-Mielikainen?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jarno-Mielikainen?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Wisconsin-Madison?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jarno-Mielikainen?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mitch-Goldberg?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mitch-Goldberg?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Oceanic_and_Atmospheric_Administration?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mitch-Goldberg?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jarno-Mielikainen?enrichId=rgreq-d52ec938cd482f21f009d17f92b39bb7-XXX&enrichSource=Y292ZXJQYWdlOzI2MDYzNTkwMjtBUzoyMjI4Nzg1Nzk1OTczMjBAMTQzMDE0OTgwMjY5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Improved GPU/CUDA Based Parallel Weather

and Research Forecast (WRF) Single Moment 5-

class (WSM5) Cloud Microphysics

Jarno Mielikainen, Bormin Huang*, Allen H.-L. Huang, Mitchell D. Goldberg

ABSTRACT

The Weather Research and Forecasting (WRF) model is an atmospheric simulation system which is

designed for both operational and research use. WRF is currently in operational use at the National

Oceanic and Atmospheric Administration (NOAA)’s national weather service as well as at the air

force weather agency and meteorological services worldwide. Getting weather predictions in time

using latest advances in atmospheric sciences is a challenge even on the fastest super computers.

Timely weather predictions are particularly useful for severe weather events when lives and property

are at risk. Microphysics is a crucial but computationally intensive part of WRF. WRF Single

Moment 5-class (WSM5) microphysics scheme represents fallout of various types of precipitation,

Drs. J. Mielikainen, B. Huang an A. Huang are with Cooperative Institute for Meteorological Satellite Studies, University of

Wisconsin-Madison (bormin@ssec.wisc.edu). Dr. M. Goldberg is with NESDIS Center for Satellite Applications and Research,

National Oceanic and Atmospheric Administration.

mailto:bormin@ssec.wisc.edu

condensation and thermodynamics effects of latent heat release. Therefore, to expedite the

computation process, Graphics Processing Units (GPUs) appear an attractive alternative to

traditional CPU architectures. In this paper, we accelerate the WSM5 microphysics scheme on GPUs

and obtain a considerable speedup thereby significantly reducing the processing time. Such high

performance and computationally efficient GPUs allow us to use higher resolution WRF forecasts.

The use of high resolution WRF enables us to compute microphysical processes for increasingly

small clouds and water droplets. To implement WSM5 scheme on GPUs, the WRF code was

rewritten into CUDA C, a high level data-parallel programming language used on NVIDIA GPU.

We observed a reduction in processing time from 16928 ms on CPU to 43.5 ms on a Graphics

Processing Unit (GPU). We obtained a speedup of 389x without I/O using a single GPU. Taking I/O

transfer times into account, the speedup obtained is 206x. The speedup was further increased by

using 4 GPUs, speedup being 1556x and 357x for without I/O and with I/O respectively.

Keywords: WRF, cloud microphysics, WSM5, GPU, parallel processing, CUDA

1. INTRODUCTION

 The science of meteorology explains observable weather events. The Greek philosopher Aristotle

wrote a book called Meteorologica back in 340 B.C which had an account of weather and climate at

that time. Topics covered included clouds, rain, snow, hail, thunder and hurricanes. However, only

after the invention of weather instruments in the late 18th century, meteorology emerged as a

genuine natural science [1]. One application of meteorology is weather forecasting, which can trace

its roots back millennia. Weather forecasts require quantitative data about the current state of the

atmosphere. The first weather observing network was established in 1654 by Ferdinando II del

Medici [2]. At that time, atmospheric measurements included rain, wind and humidity. Today,

radiosondes are used to get measurements from upper air data. Numerical weather forecasting was

first proposed by Bjernes in 1904. However, numerical weather forecasting has become feasible only

after the development of computers. Since atmosphere is a fluid, numerical weather prediction

samples the state of the fluid at a given time and forms an estimate of the future state of the fluid

using equations of fluid dynamics and thermodynamics. Weather models divide the planet into 3D

grid. Laws of physics, chemistry and fluid motion are used to model weather using differential

equations. These mathematical models are used to calculate winds, solar radiation, humidity, heat

transfer and surface hydrology for each grid cell. In addition, the interactions with neighboring cells

are calculated to predict atmospheric properties in the future.

 Some of the most powerful supercomputers in the world are used for numerical weather

forecasting. With the advent of Graphics Processing Unit (GPU) architectures, inherently parallel

problem of weather forecasting can be effectively solved using GPUs. GPUs have hundreds of

parallel processor cores for execution of tens of thousands of parallel threads. Unlike traditional

CPUs, GPUs are not optimized for a single thread performance. Instead, they are optimized for

executing a large number of threads simultaneously. Therefore, a single thread performance on a

GPU is lower than that on a contemporary CPU. This difference is because the processor

architectures require legacy software to be rewritten for efficient parallel execution on GPUs [3].

 GPUs have been used very successfully for numerous different computational problems. Variety

of GPU application domains can be found in [4] and [5]. The covered industries include scientific,

electronic design automation, computer vision, finance, medicine, imaging, engineering, gaming,

environmental science and green computing. GPUs have also been used in applications such as

synthetic aperture radar (SAR) simulation system [6] and computation of ray-traced troposphere

delays [7]. A collection of the latest GPU research in Earth Observation and remote sensing can be

found in [8]. In [9], a very comprehensive review of the recent developments in high performance

computing for remote sensing is presented. The review covers papers is such areas as spectral

signature (endmember) [10][11], target detection [12], radiative transfer models [13][14] and data

compression [15]-[17].

 The Weather Research and Forecasting (WRF) model is an atmospheric simulation system, which

is designed for both operational and research use. This common tool aspect promotes closer ties

between research and operational communities. WRF is currently in operational use at the National

Oceanic and Atmospheric Administration (NOAA)’s national weather service as well as at the air

force weather agency and meteorological services worldwide. Microphysics is a crucial but

computationally intensive part of WRF. WRF Single Moment 5-class (WSM-5) microphysics

scheme represents fallout of various types of precipitation, condensation and thermodynamics effects

of latent heat release. In this paper, we will show the results of our WSM5 optimization efforts using

Graphics Processing Units (GPUs). The use of GPUs will allow using higher resolution WRF

forecasts. The use of high resolution WRF enables computing microphysical processes for

increasingly small clouds and water droplets.

 Since public agencies need more computing capacity to forecast dangerous weather events and

analyze long-term climate change, there already exists a significant amount of work on parallel WRF

model. Weather and climate models such as WRF exhibit fine-grained data parallelism, which has

been exploited by vector processors [17] and the Single Instruction Multiple Data (SIMD)

supercomputers of the 1990s [19][20]. Modern large microprocessor based clusters are unable to

exploit parallelism much finer than one sub-domain, i.e., the geographic region(s) allocated to one

processor for weather modeling. CPUs lack the memory bandwidth and functional units needed to

exploit fine-grained parallelism. However, modern GPUs, like earlier SIMD systems, are designed to

exploit massive fine-grained parallelism.

 WRF contains a lot a different physics and dynamics options reflecting the experience and input

of the broad scientific community. The WRF physics categories are microphysics, cumulus

parametrization, planetary boundary layer, land-surface model and radiation. Explicitly resolved

water vapor, cloud and precipitation processes are included in microphysics [21]. Earlier GPU work

on WRF modules includes an older version of WSM5 microphysics portion of WRF model [22]. The

Long-Wave Rapid Radiative Transfer Model (RRTM) component of the WRF code was ported to

the GPU using CUDA Fortran [23]. Work has also been performed on GPUs to accelerate other

weather forecasting models besides WRF. In [24], a next-generation Japanese production weather

code was demonstrated to have a speedup of 80x using 528 GPUs. Dynamics routine of High

Resolution Local Area Model (HIRLAM) has been accelerated by an order of magnitude in [25].

Dynamics portion of Non-hydrostatic Isosahedral Model (NIM), a next-generation weather model

was converted to run on a GPU and a speedup of 34x was achieved in [26]. GPU acceleration of

radiance transfer computation, both for single profile and multi-profile processing were shown in [27]

and [28] respectively. In this paper, we will accelerate a newer version of WSM5 on GPUs.

 The rest of the paper is organized as follows. Section 2 describes WSM5 microphysics scheme.

Section 3 explains the basics of CUDA computing engine for NVIDIA GPUs. In Section 4, the

GPU-accelerated WSM5 microphysics scheme is explained. Section 5 has comparison of GPU

results to the original Fortran code. Finally, Section 6 concludes the paper.

2. WRF WSM5 CLOUD MICROSPHYSICS SCHEME

 The WSM5 scheme predicts five categories of hydrometrics: water vapor, cloud vapor, cloud ice,

rain and snow. Figure 1 depicts the different categories and production rates, which are explained in

Table 1. WSM5 allows supercooled water to exist and a gradual melting of snow falling below the

melting layer. The details of computational processes are described in [29][30].

Cloud iceCloud water

Rain

Water vapor

Snow

Pcond

Pidep

Praut

Pr
ev

p

Pracw

Psmlt

Psaci

Psacw

Psdep Pigen

PsautPsevp

Fig. 1. Flowchart of the microphysics processes in the WSM5 scheme.

Table 1. List of symbols in Fig. 1

Symbol Description

PCOND Production rate for condensation-evaporation of cloud water

PIDEP Production rate for deposition sublimation rate of ice

PIGEN Production rate for generation of ice from water vapor

PRACW Production rate for accretion of cloud water by rain

PRAUT Production rate for autoconversion of cloud water to form rain

PREVP Production rate for accretion cloud ice by snow

PSACI Production rate for accretion of rain by snow

PSACW Production rate for accretion cloud water by snow

PSAUT Production rate for autoconversion of cloud ice to form snow

PSDEP Production rate for deposition-sublimation rate of snow

PSEVP Production rate for evaporation of melting snow

PSMLT Production rate for melting of snow from cloud water

Condensation of water vapor to cloud water is expressed as

𝑃𝐶𝑂𝑁𝐷 = (𝑞 − 𝑞𝑠𝑤) [∆𝑡 (1 +
𝐿𝑣

2

𝐶𝑝𝑚𝑅𝑉𝑇2
)],

where cloud water evaporates, if q < qSW., which is saturated value with respect to cloud water, Δt is

time increment, Lv
 is latent heat of condensation, Cpm is specific heat of moist air at constant pressure,

RV is gas constant for water vapor and T is temperature.

When air supersaturated with respect to ice, the growth rate of ice crystals by deposition of water

vapor is

𝑃𝐼𝐷𝐸𝑃 =
4𝐷𝐼(𝑆𝐼 − 1)𝑁𝐼

𝐴𝐼 + 𝐵𝐼
,

where DI is cloud ice diameter, SI is saturation ratio over ice, AI and BI are thermodynamic terms.

When temperature, T, is smaller than reference temperature, T0, and the air is supersaturated with

respect to ice, the initiation rate of cloud ice from water vapor is

𝑃𝐼𝐺𝐸𝑁 = 𝑚𝑖𝑛[(𝑞𝐼0 − 𝑞𝐼)/∆𝑡, (𝑞 − 𝑞𝑆𝐼)/∆𝑡],

where qIo is mixing ratio of ice nuclei, qI is mixing ratio of ice crystal, q is mixing ratio of water

vapor and qSI is saturated value with respect to ice.

The growth rate of raindrop by accretion of cloud water is

1/2

0

3

(3)
,

4

R RC R c o
RACW b

r

a E n q b
P

 

 

   
  

 

where aR is 841.9 m/s, ERC=1 is rain water collection efficiency, n0R =8ˑ106 is intercept parameter of

rain, qc is mixing ratio of cloud water, Γ is gamma function, λr is a slope of rain size distribution, ρ0

is air density at reference state, and ρ is air density.

Production rate for auto conversion of cloud water to form rain

𝑃𝑅𝐴𝑈𝑇 =
0.104𝑔𝐸𝐶𝜌0

4
3⁄

𝜇(𝑁𝐶𝜌𝑊)
1

3⁄
∙ 𝑞𝐶

7 3𝐻(𝑞𝐶 − 𝑞𝐶0),

where H() is Heaviside step function, g=9.8 is gravitational acceleration, EC is mean collection

efficiency, µ=1.718 ˑ10-5 is dynamic viscosity of air, NC is concentration of cloud water droplet, ρW

is water density, qc is mixing ratio of cloud water and qc0 is critical mixing ratio of cloud water.

The evaporation rate for rain is

1/2 1
1/42

0

(5)/22

5
0.31

2 (1) 0.78 2
,

() r

r

kR W R o
REVP b

W W r kr

b
a

N S a
P

A B D

  

  
 

  
                       

  

where SW is saturation ratio with respect to water, AW and BW are thermodynamic terms, aR=841.9

and µk is kinematic viscosity.

The rate of accretion of cloud ice by snow is:

3 2 2 12 ,
4

I SI os S I

SACI S I S I S

q E n V V
P D D


    


     

where ESI, the collection efficiency of the snow for cloud ice, Vs is mass weighted fall speed of snow,

VI is mass weighted fall speed of cloud ice, λS is a slope of snow size distribution and DI is cloud ice

diameter.

The accretion rate of cloud water by snow is

1/2

3

(3)
,

4 s

s SC os c s o
SACW b

s

a E n q b
P

 

 

   
  

 

where ESW =1 is the collection efficiency of the snow for cloud water and bs is 0.41. When T > T0,

PSACW will contribute to form rain drop.

The aggregation rate of ice crystals to form snow is:

0.02531.0 10 e ().cT

SAUT i IoP q q  

The depositional growth rate of snow is

   

1/4 1/41/3

20

5 /2 5 /2

5 5

4 (1) 2 2
0.65 0.44 ,

S S

s s

S i k s o
SDEP s b b

I I ks s

b b

n S a
P

A B D

  


  



   

      
                      

      
  

where AI and BI are thermodynamic terms.

Evap

orati

on of

melti

ng snow is

Production rate for melting of snow from cloud water is

where Lf is latent heat of fusion and Ku is thermal conductivity of air.

   

1/4 1/21/3

20

5 /2 5 /2

5 5

4 (1) 2 2
0.65 0.44 .

S S

s s

S i k s o
SEVP s b b

W W ks s

b b

n S a
P

A B D

  


  



   

      
                      

      
  

   
20

0 5 /2

5

2 2
0.65 0.44 ,

S

s

S
SMLT u s b

f s

b

n
P K T T

L








 

   
  
     

 
  

3. GPU COMPUTING

CUDA is an extension to the C programming language which offers a direct programming of the

GPUs. It is designed such that its constructs allow for natural expression of data-level parallelism. A

CUDA program is organized into two parts: a serial program running on the CPU and a parallel part

running on the GPU. The parallel part is called a kernel. A CUDA program automatically uses more

parallelism on GPUs that have more processor cores. A C program using CUDA extensions

distributes a large number of copies of the kernel into available multiprocessors (MP) and executes

them simultaneously.

Figure 2 presents a schematic visualization of a GTX 590 GPU device. Each multiprocessor has

32 CUDA cores and it executes in parallel with the other multiprocessors. Each multiprocessor has

two groups of 16 CUDA cores. All sixteen cores in a group execute in a Single Instruction Multiple

Data (SIMD) fashion with all cores in the same multiprocessor executing the same instruction at the

same time. Each GPU has 1.5 GB of global memory, which has a higher bandwidth than the DRAM

memory in the CPUs.

The CUDA code consists of three computational phases: transmission of data into the global

memory of the GPU, execution of the CUDA kernel and transmission of results from the GPU into

the memory of CPU.

Figure 3 presents a schematic visualization of a multiprocessor (MP). There are four special

function units (SFU) inside each MP for single-precision floating-point transcendental functions.

Each MP has 16 load (LD) / store (ST) units for memory access. Each MP also has 32768 32-bit

registers which can be accessed in a single clock cycle. A nice introduction to the CUDA

programming model can be found in [31].

CUDA takes a bottom-up point of view of parallelism in which a thread is an atomic unit of

parallelism. Threads are organized into a three-level hierarchy. The highest level is a grid, which

consists of thread blocks. A grid is a three-dimensional array of thread blocks. Thread blocks

implement coarse-grained scalable data parallelism and they are executed independently, which

allows them to be scheduled in any order across any number of cores. This allows the CUDA code to

scale with the number of processors.

Fig. 2. Schematic visualization of a GPU device.

Threads are executed in groups of 32 threads called warps. A CUDA core group inside a MP

issues the same instruction to all the threads in a warp. When the threads take divergent paths,

multiple passes are required to complete the warp execution. At each clock cycle, the MP schedules

Streaming

Multiprocessor

 0

Streaming

Multiprocessor

 0

16/48 KB

L1 Cache /

Shared Memory

16/48 KB
L1 Cache /

Shared Memory

768 KB

L2 Cache

768 KB

L2 Cache

GDDR5

Memory

Controller

GDDR5

Memory

Controller

Streaming

Multiprocessor

 15

Streaming

Multiprocessor

 15

16/48 KB

L1 Cache /

Shared Memory

16/48 KB
L1 Cache /

Shared Memory

GDDR5

Memory

Controller

GDDR5

Memory

Controller

PCI
Express

2.0

PCI

Express

2.0

...

a suitable warp for execution. The scheduling favors those threads whose next instructions are not

waiting for a long-latency instruction such as global memory access. Overloading the MP with a lot

of active threads allows the GPU to hide the latency of slow instructions. Global memory loads and

stores by threads of a half-warp (16 threads). Different global memory accesses are coalesced by the

device in as few as one memory transaction when the starting address of the memory access is

aligned and the threads access the data sequentially. An efficient use of the global memory is one of

the essential requirements for a high performance CUDA kernel. The other main issue to consider is

to find enough data parallelism to keep all CUDA cores busy.

Fig. 3. Schematic visualization of a multi processor.

4. GPU ACCELERATED WSM5

4.1 The original Fortran code of WSM5 microphysics scheme

Profiling graph of the original Fortran code on a CPU is shown in Fig. 4. Graphs nodes contain

information about the total processing time in percent of a sub-graph rooted at the node, processing

time at the node and number of times the subroutine is executed. Directed graph edges have

Instruction Cache

Warp Scheduler Warp Scheduler

Register File (32768 x 32 bit)

Core

Interconnect Network

Shared Memory / L1 Cache

L2 Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

information about the percentage of the processing time spent on that specific subroutine call and the

number of times the subroutine is called. In Table 2, the subroutines are explained.

Fig. 4. Profiling graph of WSM5 microphysics scheme on a CPU. Graphs nodes contain information about the total processing time in percent of a sub-

graph rooted at the node, processing time at the node and number of times the subroutine is executed. Directed graph edges have information about the

percentage of the processing time spent on that specific subroutine call and the number of times the subroutine is called.

Table 2. Description of WSM5 microphysics subroutines

Subroutine name Description

wsm5 Preparation for microphysics computation.

wsm52d 5-class mixed ice microphysics scheme of the Single-Moment MicroPhysics (WSMMP).

nislfv_rain_plm Semi-Lagrangian forward advection for cloud with mass conservation and positive definite advection 2nd order interpolation

with monotonic piecewise linear method.

slope_wsm5 Distribution slope parameter computation

slope_snow Calculation of the distribution slope parameter, based upon conservation of the snow mass predicted by simulated

microphysical processes.

slope_rain Distribution slope parameter for rain.

4.2 Manual code translation of WSM5 from Fortran to standard C

 As the original WRF code was written in Fortran 90, we ported the original WSM5 microphysics

module from Fortran to CUDA C. As an intermediate conversion step, the original Fortran code was

first rewritten using standard C. During Fortran to C conversion, some of the temporary arrays were

replaced by scalar values, which are recomputed as needed. This was done keeping in mind that in

GPUs it is faster to recompute values than to transfer them from relatively slower global memory. In

other words, GPUs have higher computation to bandwidth capabilities than CPUs. The rewritten

WSM5 code was verified against the Fortran code. After verification, C code was converted into

CUDA C for data parallel execution on GPUs.

4.3 Converting C code into CUDA C

 To test WSM5 we used a CONtinental United States (CONUS) benchmark data set for 12 km

resolution domain for October 24, 2001 [32]. A WRF domain is a geographic region of interest

discretized into a 2-dimensional grid parallel to the ground. Each grid point has multiple levels,

which correspond to various vertical heights in the atmosphere. The size of the CONUS 12 km

domain is 433 x 308 horizontal grid points with 35 vertical levels. As shown in Fig. 5, the test

problem is a 12 km resolution 48-hour forecast over the Continental U.S. capturing the development

of a strong baroclinic cyclone and a frontal boundary that extends from north to south across the

entire U.S. For compiling Fortran code, we used default compiler options from WRF for gFortran: -

O3 -ftree-vectorize -ftree-loop-linear -funroll-loops.

12km resolution case

Grid dimention:

X=433

Y=308

Z=35

Executed in

one thread

X

Z

Y

Cloud iceCloud water

Rain

Water vapor

Snow

Pcond

Pidep

Praut

Pr
ev

p

Pracw

Psmlt

Psaci

Psacw

Psdep Pigen

Psaut
Psevp

Fig. 5. U.S. Forecast for 48 hours using 12 km resolution. Frame 32 of Vis5D animation.

 WSM5 microphysics computation is organized into a 3-dimensional grid where the microphysical

process computations in each column (k-dimension) are processed independently. Thus, there are

two dimensions of parallelism (i- and j-dimensions) to work with. Data-parallelism is achieved by

giving each thread a unique global index in the i- and j-dimensions of the domain using thread and

block indices. The result of this thread mapping is that multiple threads are carrying out the same

computation on different data in parallel. The major changes made to CUDA C code for increasing

its speed are as follows:

 On-chip fast memory was configured as 48KB of L1 cache and 16 KB of shared memory

instead of default 16KB of L1 cache and 48 KB of shared memory.

 Restricted pointers were used for global variables in order to alleviate the aliasing problem,

which inhibits compiler certain types of compiler optimizations. With __restrict__ keywords

added to the pointer arguments, the compiler can reorder and do common sub-expression

eliminations.

 Using register scalars instead of global memory arrays for storing temporary values. This

process was applied to microphysical process variables listed in Table 1. In addition, several

other temporary arrays were converted to scalars. Thus, their values would be recomputed

using values in registers as needed instead loading a values from slower global memory.

 Compiler option -use_fast_math was utilized for faster but less accurate computation. The

option forces GPU code to use intrinsic mathematical function. Also, denormalized numbers

are flushed to zero. In addition, less precise division and square root operations are used.

 Three separate instances of slope function were written instead of using the same function for

three separate function calls, which used only some of the output variables.

 A CUDA C program distributes a large number of copies of the kernel into available

multiprocessors to be executed simultaneously. Therefore, A CUDA program automatically uses

more parallelism on GPUs that have more processor cores. This means that a lot of parallel threads

have to be launched on GPU for effective parallel implementation. In order to achieve a high level of

parallelism on a GPU we replaced the two outer loops by index computations using thread and block

indices. Thus, the domain decomposition is such that each thread will compute values for all levels

in one spatial position. This domain decomposition is illustrated in Fig. 6.

k

Thread

block

j

i

Thread

block

64 1

Fig. 6. Schematic visualization of the WSM5 microphysics domain decomposition.

 Data-parallel nature of microphysics computation is illustrated in Fig. 7, which shows a block

diagram of accretion of cloud water by rain (pracw). The same microphysics operation is performed

for all the domain values at the same time in parallel. The C code of the process can be seen in Fig. 8.

Constants

qcrmin

qmin

pacrr

dtccd

Input parameters in shared memory

Global memory

Register file

pracw

rslope3_0_r

rslopeb_0_r

qr

qc

denfac

min

*

*

*

*

>

>

yes

yes

0
no

no

/

New Topic

Fig. 7. Block diagram of a data-parallel kernel snippet of accretion of cloud water by rain (pracw).

 if(qr[I3(i,k,j)] > qcrmin && qc[I3(i,k,j)] > qmin)

 pracw = min(pacrr * rslope3_0_r * rslopeb_0_r * qc[I3(i,k,j)] * denfac[I3(i,k,j)], qc[I3(i,k,j)] / dtcld);

 else

 pracw = 0.0f;
Fig. 8. C code for accretion of cloud water by rain (pracw).

 To evaluate the performance of the GPU accelerated WSM5, we ran our CUDA C code on GTX

590. Specifications can be seen in Table 3. Each MP has a data cache, which is shared among the

CUDA cores. The data cache can be configured as 16 KB software managed cache called shared

memory and 48 KB hardware cache (L1) or the other way around. There is also 768 KB of level 2

(L2) cache, which is shared among MPs. The CPU used in the tests was Intel i7 970 CPU running at

3.20 GHZ. A reduction of processing time from 16928 ms on CPU to 52.8 ms without I/O on a GPU

means that a speedup of 321x can be achieved. We used thread block size 64. The CUDA C

compiler was version 4.1 release candidate 1. Also, the code was compiled for 32-bit architecture for

faster execution.

Table 3. Hardware specifications

Number of CUDA cores per GPU 512

Global memory bandwidth per GPU 164 GB/s

Global memory per GPU 1.5 GB

Frequency of CUDA cores 1.215 GHz

Number of 32-bit registers per multiprocessor 32768

L1 cache 16 KB / 48 KB

L2 cache size per GPU 768 KB

The achieved instruction per byte ratio for the kernel is 2.07. This ratio is the total number of instructions issued by the

kernel divided by the total number of bytes accessed by the kernel from global memory. Balanced instruction ratio is

defined as a ratio of the peak instruction throughput and the peak memory throughput of the CUDA device. For the GTX

590 the balanced instruction ratio is 3.80 instructions per byte, which is more than the achieved instructions per byte.

Hence, the kernel is memory bandwidth limited.

4.4 Coalesced memory access

 Recall that coalesced memory access happens when adjacent threads load or store data that in

contiguous and aligned in memory. Because of CUDA’s coalescing rules, it is convenient to lay out

memory in an array so that i-columns in the array start on 64 byte boundaries. Therefore, i-columns

are padded with zeroes so that each i-column begins at a 64-byte boundary. Consequently, the full

padded size of i-column dimension is increased from the original idim to pitch. The other two array

dimensions are kdim and jdim. Therefore, the stride between adjacent elements in i- dimension is 1,

stride between adjacent elements in k-dimension is pitch and the stride between adjacent elements in

j-dimension is pitch*kdim. The memory layout of 3D arrays is illustrated in Fig. 9. The memory

layout for 2D arrays is similar, only k-dimension is removed. With coalesced memory access, the

processing time is reduced from 52.8 ms to 43.5 ms.

...

i

idim

pitch

k

j

 Fig. 9. The memory layout of 3D-arrays.

 The first GPU/CUDA based WSM5 microphysics (in WRFv3.1 version) was developed by

Michalakes et al. of NCAR with a nearly 10x speedup on NVIDIA’s 8800 GTX. Later a team in

Alexandria University developed WRF v3.2 version of WSM5 microphysics [33] with a significant

improvement in speedup. For fair comparison, we ran both our WSM5 GPU/CUDA code and

Alexandria team's WSM5 GPU code on our NVIDIA GTX 590 GPU. As seen from speedup results

in Fig. 10 our implementation of WSM5 on a GPU is faster than the other implementation because

we scalarized more temporary arrays and used coalesced memory access pattern for global memory.

Fig. 10. Speedups for WSM5 without I/O.

4.5 Asynchronous data transfer

 The other major difference between C and CUDA C version is the additional data transfer

between CPU and GPU in CUDA C. In order to have simultaneous CUDA kernel execution and data

transfer, we utilized streams. Stream can be seen as a command pipeline, which executes commands

in first-in-first-out (FIFO) order. A diagram depicting the execution timeline of the WSM5 utilizing

asynchronous data transfer to overlap CUDA kernel with data transfer is shown in Fig. 11.

Host-to-device

memory transfer

Copy engine Kernel engine

Ti
m

e

Host-to-device

memory transfer

Host-to-device

memory transfer

 Device-to-host

memory transfer

 Device-to-host

memory transfer

 Device-to-host

memory transfer

CUDA

kernel

CUDA

kernel

CUDA

kernel

389x

240x

0

100

200

300

400

Our Approach Alexandria Team

Fig. 11. Execution timeline of the WSM5 computation

 The three streams operating at the same time are colored in orange and yellow and purple,

respectively. During each kernel call to CUDA kernel, several rows of data are processes by the

kernel. In Fig. 12, processing times are shown are a function of the number of rows. The presented

processing times are without coalesced memory access. With coalesced memory access, the runtime

is 106.5 ms compared to 95.1 ms without coalesced memory access. This anomaly is related to the

current state of the NVIDIA device drivers and the behavior of the memory transfers of data

allocated for coalesced memory access can change in the future.

Fig. 12. Processing times [ms] for 1 GPU as a function of the number of rows transferred from CPU to GPU at a time.

The optimal number of rows is 9. The speedups obtained for our implementation and the older GPU

implantation are shown in Fig. 13. Our implementation is faster in this case as well.

Fig. 13. WSM5 speedups with I/O.

0

100

200

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

206x

143x

0

50

100

150

200

250

Our Approach Alexandria Team

4.6 Multi-GPU implementation

 Multi-GPU implementation of WSM5 operates by computing several continuous j-dimension

values in the arrays in the same GPU. For 2-4 GPUs the optimal number of j-dimension to transfer

from CPU to GPU are 18, 10 and 13, respectively. This drop in the number of rows is due to the fact

that PCIe bus is becoming more heavily utilized as more GPUs are using it. Thus, smaller amount of

data transfer is more optimal.

 A set-up for two GTX 590 cards is shown in Fig. 14. In this set-up, there are two GPUs on one

GPU card for total of four GPUs. When two GPUs on the same GPU card are transferring data at the

same time, the total maximum bandwidth is almost the same as if only one GPU is transferring data.

Fig. 14. Schematic diagram of multi-GPU setup

 Table 4 lists the computation times for multi-GPUs. The corresponding speedups are depicted in

Fig. 16. In the tests, when 2 GPU are used they are from the different GPU cards. Thus, the GPUs

CPU
CPU

North
Bridge

North
Bridge

24 GB
DDR3

24 GB
DDR3

GTX 590 GTX 590

GPU 2 GPU 3

1.5 GB
GDDR5

1.5 GB
GDDR5

GPU 0 GPU 1

1.5 GB
GDDR5

1.5 GB
GDDR5

PCIe 2.0 16x lanesPCIe 2.0 16x lanes

are using separate GPU links and are not saturating the same link. Without I/O, the speedup

increases linearly with the number of GPU. Thus, 4 GPUs have a speedup of 1556x.

Table 4. Processing times with I/O for multi-GPU setup

Number of GPUs Processing time [ms]

1 82.1

2 50.3

4 47.3

Fig. 15. WSM5 microphysics GPU speedups with I/O over serial CPU implementation.

 Microphysics computation is just a small part of the whole WRF model. Given that we have very

successfully GPU accelerated WSM5 microphysics scheme, we will continue to convert other WRF

modules to CUDA C programming model. Once whole WRF has been rewritten using CUDA C,

there will be no need to implement input/output transfers between CPU and GPU for each individual

module. Instead, only inputs to the first WRF module have to be transferred from CPU to GPU.

Similarly, only the outputs from the last WRF module will be transferred from GPU to CPU.

0

50

100

150

200

250

300

350

400

1 GPU 2 GPUs 4 GPUs

206x

337x
357x

S
p

ee
d

u
p

Therefore, we expect that the speedup for WSM5 in WRF GPU will be closer to results presented in

this paper for speedups without I/O than with I/O. The future work includes evaluating Message

Passing Interface (MPI) for connecting GPU workstations to form a GPU cluster for WRF

computation. Also, other many-core programming environments in addition to NVIDIA’s CUDA

will be considered.

Fig. 16. WSM5 microphysics GPU speedups without I/O over serial CPU implementation.

5. CONCLUSIONS

 In this paper, we have presented results for GPU accelerated WSM5 microphysics scheme, which is

extremely well suited for implementation on a graphics processor. The implementation achieves

206x and 389x speedups with and without I/O using a single GPU as compared to the Fortran

implementation running on a CPU. These results represent a 60% improvement over the earlier

GPU accelerated WSM5 module. The improvements over the previous GPU accelerated WSM5

module were numerous. Some minor improvements were that we scalarized more temporary arrays

0

200

400

600

800

1000

1200

1400

1600

1 GPU 2 GPUs 4 GPUs

389x

778x

1556x

S
p

ee
d

u
p

and compiler tricks specific to Fermi class GPU were used. The most important improvements were

the use of coalesced memory access pattern for global memory and asynchronous memory transfers.

Using 4 GPUs, the speedup was increased to 357x with I/O. Without I/O the speedup increases

linearly with the number of GPUs. Thus, 4 GPUs have a speedup of 1556x. Overall, the GPU

version of WSM5 microphysics scheme was successful and achieved a significant performance

increase as compared to the original CPU implementation. Thus, we believe that GPU computing is

a viable way to accelerate WRF computation.

ACKNOWLEDGEMENTS

This work is supported by the National Oceanic and Atmospheric Administration (NOAA) under

Grant No. NA10NES4400013.

REFERENCES

[1] C. Ahrens, Meteorology Today, 9th edition.

[2] R. Bradley, P. Jones, “Climate Since A.D. 1500,” Routledge, 1992.

[3] J. Nickolls, W. J. Dally, "The GPU Computing Era," IEEE Micro, 30(2), 56-69 (2010), doi:10.1109/MM.2010.41.

[4] W. Hwu (ed.), GPU Computing Gems Emerald Edition.

[5] W. Hwu (ed.), GPU Computing Gems Jade Edition.

[6] T. Balz, U. Stilla, "Hybrid GPU-Based Single- and Double-Bounce SAR Simulation," IEEE Transactions on Geoscience and Remote

Sensing, vol. 47, no. 10, pp. 3519-3529, DOI: 10.1109/TGRS.2009.2022326.

[7] T. Hobiger, R. Ichikawa, Y. Koyama, T. Kondo, "Computation of Troposphere Slant Delays on a GPU," IEEE Transactions on Geoscience

and Remote Sensing, vol. 47, no. 10, pp. 3313-3318. DOI:10.1109/TGRS.2009.2022168.

[8] A. Plaza, Q. Du, Y.-L. Chang, R. L. King, “Foreword to the Special Issue on High Performance Computing in Earth Observation and

Remote Sensing,” IEEE J. Sel, Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3, pp. 503-507, Sept. 2011, DOI:

10.1109/JSTARS.2011.2163551.

[9] C. A. Lee, S. D. Gasster, A. Plaza, C.-I. Chang, B. Huang, "Recent Developments in High Performance Computing for Remote Sensing: A

Review," IEEE J. Sel, Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3, pp. 508-527, 2011, DOI: 10.1109/JSTARS.2011.2162643.

[10] J. Setoain, M. Prieto, C. Tenllado, A. Plaza, and F. Tirado, “Parallel morphological endmember extraction using commodity graphics

hardware,” IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 441–445, Sept. 2007, DOI: 10.1109/LGRS.2007.897398.

[11] A. Plaza, J. Plaza, and H. Vegas, “Improving the performance of hyperspectral image and signal processing algorithms using parallel,

distributed and specialized hardware-based systems,” J. Signal Process. Syst., vol. 61, pp. 293–315, 2010, DOI: 10.1007/s11265-010-0453-

1.

[12] A. Paz and A. Plaza, “Clusters versus GPUs for parallel automatic target detection in remotely sensed hyperspectral images,” EURASIP J.

Advances in Signal Processing, 2010, DOI:10.1155/2010/915639.

[13] B. Huang, J. Mielikainen, H. Oh, and H.-L. Huang, “Development of a GPU-based high-performance radiative transfer model for the

infrared atmospheric sounding interferometer (IASI),” J. Comput. Phys., vol. 230, no. 6, pp. 2207–2221, DOI: 10.1016/j.jcp.2010.09.011.

[14] J. Mielikainen, B. Huang, and A. H.-L. Huang, “GPU-accelerated multi-profile radiative transfer model for the infrared atmospheric

sounding interferometer,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS), vol. 4, no. 3, pp. 691–700, Sept. 2011, DOI:

10.1109/JSTARS.2011.2159195.

[15] J. Mielikainen, R. Honkanen, B. Huang, P. Toivanen, and C. Lee, “Constant coefficients linear prediction for lossless compression of

ultraspectral sounder data using a graphics processing unit,” J. Applied Remote Sens., vol. 4, no. 1, pp. 751–774, 2010,

DOI:10.1117/1.3496907.

[16] C. Song, Y. Li, and B. Huang, “A GPU-accelerated wavelet decompression system with SPIHT and Reed-Solomon decoding for satellite

images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS), vol. 4, no. 3, pp. 683–690, Sept. 2011, DOI:

10.1109/JSTARS.2011.2159962.

[17] S.-C. Wei and B. Huang, “GPU acceleration of predictive partitioned vector quantization for ultraspectral sounder data compression,” IEEE

J. Sel. Topics Appl. Earth Observ. Remote Sens. (JSTARS), vol. 4, no. 3, pp. 677–682, Sept. 2011, DOI: 10.1109/JSTARS.2011.2132117.

[18] S. Shingu, H. Takahara, H. Fuchigami, M. Yamada, Y. Tsuda, W. Ohfuchi, Y. Sasaki, K. Kobayashi, T. Hagiwara, S. ichi Habata, M.

Yokokawa, H. Itoh, and K. Otsuka, “A 26.58 tflops global atmospheric simulation with the spectral transform method on the earth

simulator,” Proceedings of the ACM/IEEE conference on Supercomputing, pp. 1–19, Sept. 2002, DOI: 10.1109/SC.2002.10053.

[19] J. Dukowicz, R. D. Smith, and R. Malone, “A reformulation and implementation of the bryancox- semtner ocean model on the connection

machine.,” Atmos. Ocean. Tech., vol. 10, pp. 195–208, 1993.

[20] S. W. Hammond, R. D. Loft, J. M. Dennis, and R. K. Sato. “Implementation and performance issues of a massively parallel atmospheric

model,” Parallel Computing, vol. 21, 1593–1619, 1995.

[21] Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W. and Powers J. G., “A

Description of the Advanced Research WRF Version 3,” NCAR Technical Note, NCAR/TN-475+STR.

[22] J. Michalakes, M. Vachharajani, "GPU acceleration of Numerical Weather Prediction," Parallel Processing Letters, vol. 18, no. 4, pp. 531-

548, 2008, doi: 10.1142/S0129626408003557.

[23] G. Ruetsch, E. Phillips and M. Fatica, "GPU acceleration of the Long-Wave Rapid Radiative Transfer Model in WRF using CUDA

Fortran," Many-Core and Reconfigurable Supercomputing Conference, (2010), url:

http://www.pgroup.com/lit/articles/nvidia_paper_rrtm.pdf.

[24] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo, A. Nukada, N. Maruyama, S., "An 80-Fold Speedup, 15.0 TFlops Full

GPU Acceleration of Non-Hydrostatic Weather Model ASUCA Production Code," International Conference for High Performance

Computing, Networking, Storage and Analysis, pp. 1-11, 2010, DOI: 10.1109/SC.2010.9.

[25] V.T. Vu, G. Cats, L. Wolters, "GPU acceleration of the dynamics routine in the HIRLAM weather forecast model," International

Conference on High Performance Computing and Simulation (HPCS), pp. 31-38, 2010, DOI: 10.1109/HPCS.2010.5547152.

[26] M. W. Govett, J. Middlecoff and T. Henderson, "Running the NIM Next-Generation Weather Model on GPUs,” in 10th IEEE/ACM

International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 792-796 2010, DOI: 10.1109/CCGRID.2010.106.

[27] B. Huang, J. Mielikainen, H. Oh and H.-L. Huang, "Development of a GPU-based High-Performance Radiative Transfer Model for the

Infrared Atmospheric Sounding Interferometer (IASI)," Journal of Computational Physics, vol. 230, no. 6, pp. 2207-2221, 2011,

DOI:10.1016/j.jcp.2010.09.011.

[28] J. Mielikainen, B. Huang, and H.-L. Huang, “GPU-Accelerated Multi-Profile Radiative Transfer Model for the Infrared Atmospheric

Sounding Interferometer”, IEEE J. Sel, Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3, pp. 691-700, Sept. 2011,

DOI:10.1109/JSTARS.2011.2159195.

[29] Hong, S., Dudhia, J., Chen, S.-H., “A Revised Approach to Ice Microphysical Processes for the Bulk Parametrization of Clouds and

Precipitation,” Monthly Weather Review, vol. 132, no. 1, pp. 103-120, 2004.

[30] Hong, S.-Y. and Lim., J.-O. J., “The WRF Single-Moment 6-Class Microphysics Scheme (WSM6),” Journal of the Korean Meteorological

Society, vol. 42, no. 2, pp. 129-151, 2006.

[31] Sanders, J., Kandrot, E., CUDA by Example: An Introduction to General-Purpose GPU Programming, Pearson Education, Inc. Boston,

MA (2010).

[32] http://www.mmm.ucar.edu/wrf/WG2/bench/Bench_V3_20081028.htm

[33] http://www.mmm.ucar.edu/wrf/WG2/GPU/WSM5.htm

View publication stats

https://www.researchgate.net/publication/260635902

	Improved GPU/CUDA Based Parallel Weather and Research Forecast (WRF) Single Moment 5-class (WSM5) Cloud Microphysics
	Jarno Mielikainen, Bormin Huang , Allen H.-L. Huang, Mitchell D. Goldberg
	Abstract
	Keywords: WRF, cloud microphysics, WSM5, GPU, parallel processing, CUDA
	1. INTRODUCTION
	2. WRF WSM5 Cloud Microsphysics scheme
	3. GPU Computing
	4. GPU Accelerated WSM5
	4.1 The original Fortran code of WSM5 microphysics scheme
	4.2 Manual code translation of WSM5 from Fortran to standard C
	4.3 Converting C code into CUDA C
	4.4 Coalesced memory access
	4.5 Asynchronous data transfer
	4.6 Multi-GPU implementation

	5. CONCLUSIONS
	Acknowledgements
	References

