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ABSTRACT   

The Weather Research and Forecasting (WRF) model is an atmospheric simulation system which is 

designed for both operational and research use. WRF is currently in operational use at the National 

Oceanic and Atmospheric Administration (NOAA)’s national weather service as well as at the air 

force weather agency and meteorological services worldwide. Getting weather predictions in time 

using latest advances in atmospheric sciences is a challenge even on the fastest super computers. 

Timely weather predictions are particularly useful for severe weather events when lives and property 

are at risk. Microphysics is a crucial but computationally intensive part of WRF. WRF Single 

Moment 5-class (WSM5) microphysics scheme represents fallout of various types of precipitation, 
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condensation and thermodynamics effects of latent heat release. Therefore, to expedite the 

computation process, Graphics Processing Units (GPUs) appear an attractive alternative to 

traditional CPU architectures. In this paper, we accelerate the WSM5 microphysics scheme on GPUs 

and obtain a considerable speedup thereby significantly reducing the processing time. Such high 

performance and computationally efficient GPUs allow us to use higher resolution WRF forecasts. 

The use of high resolution WRF enables us to compute microphysical processes for increasingly 

small clouds and water droplets. To implement WSM5 scheme on GPUs, the WRF code was 

rewritten into CUDA C, a high level data-parallel programming language used on NVIDIA GPU. 

We observed a reduction in processing time from 16928 ms on CPU to 43.5 ms on a Graphics 

Processing Unit (GPU). We obtained a speedup of 389x without I/O using a single GPU. Taking I/O 

transfer times into account, the speedup obtained is 206x. The speedup was further increased by 

using 4 GPUs, speedup being 1556x and 357x for without I/O and with I/O respectively.  

 

Keywords: WRF, cloud microphysics, WSM5, GPU, parallel processing, CUDA 

 

1. INTRODUCTION  

     The science of meteorology explains observable weather events.  The Greek philosopher Aristotle 

wrote a book called Meteorologica back in 340 B.C which had an account of weather and climate at 

that time. Topics covered included clouds, rain, snow, hail, thunder and hurricanes. However, only 

after the invention of weather instruments in the late 18th century, meteorology emerged as a 

genuine natural science [1]. One application of meteorology is weather forecasting, which can trace 

its roots back millennia. Weather forecasts require quantitative data about the current state of the 



 

 
 

 

atmosphere. The first weather observing network was established in 1654 by Ferdinando II del 

Medici [2]. At that time, atmospheric measurements included rain, wind and humidity. Today, 

radiosondes are used to get measurements from upper air data.  Numerical weather forecasting was 

first proposed by Bjernes in 1904. However, numerical weather forecasting has become feasible only 

after the development of computers. Since atmosphere is a fluid, numerical weather prediction 

samples the state of the fluid at a given time and forms an estimate of the future state of the fluid 

using equations of fluid dynamics and thermodynamics. Weather models divide the planet into 3D 

grid. Laws of physics, chemistry and fluid motion are used to model weather using differential 

equations. These mathematical models are used to calculate winds, solar radiation, humidity, heat 

transfer and surface hydrology for each grid cell. In addition, the interactions with neighboring cells 

are calculated to predict atmospheric properties in the future. 

     Some of the most powerful supercomputers in the world are used for numerical weather 

forecasting. With the advent of Graphics Processing Unit (GPU) architectures, inherently parallel 

problem of weather forecasting can be effectively solved using GPUs. GPUs have hundreds of 

parallel processor cores for execution of tens of thousands of parallel threads. Unlike traditional 

CPUs, GPUs are not optimized for a single thread performance. Instead, they are optimized for 

executing a large number of threads simultaneously.  Therefore, a single thread performance on a 

GPU is lower than that on a contemporary CPU. This difference is because the processor 

architectures require legacy software to be rewritten for efficient parallel execution on GPUs [3].  

     GPUs have been used very successfully for numerous different computational problems. Variety 

of GPU application domains can be found in [4] and [5]. The covered industries include scientific, 

electronic design automation, computer vision, finance, medicine, imaging, engineering, gaming, 



 

 
 

 

environmental science and green computing. GPUs have also been used in applications such as 

synthetic aperture radar (SAR) simulation system [6] and computation of ray-traced troposphere 

delays [7]. A collection of the latest GPU research in Earth Observation and remote sensing can be 

found in [8]. In [9], a very comprehensive review of the recent developments in high performance 

computing for remote sensing is presented.  The review covers papers is such areas as spectral 

signature (endmember) [10][11], target detection [12], radiative transfer models [13][14] and data 

compression [15]-[17]. 

     The Weather Research and Forecasting (WRF) model is an atmospheric simulation system, which 

is designed for both operational and research use. This common tool aspect promotes closer ties 

between research and operational communities. WRF is currently in operational use at the National 

Oceanic and Atmospheric Administration (NOAA)’s national weather service as well as at the air 

force weather agency and meteorological services worldwide. Microphysics is a crucial but 

computationally intensive part of WRF. WRF Single Moment 5-class (WSM-5) microphysics 

scheme represents fallout of various types of precipitation, condensation and thermodynamics effects 

of latent heat release. In this paper, we will show the results of our WSM5 optimization efforts using 

Graphics Processing Units (GPUs). The use of GPUs will allow using higher resolution WRF 

forecasts. The use of high resolution WRF enables computing microphysical processes for 

increasingly small clouds and water droplets. 

     Since public agencies need more computing capacity to forecast dangerous weather events and 

analyze long-term climate change, there already exists a significant amount of work on parallel WRF 

model. Weather and climate models such as WRF exhibit fine-grained data parallelism, which has 

been exploited by vector processors [17] and the Single Instruction Multiple Data (SIMD) 



 

 
 

 

supercomputers of the 1990s [19][20]. Modern large microprocessor based clusters are unable to 

exploit parallelism much finer than one sub-domain, i.e., the geographic region(s) allocated to one 

processor for weather modeling. CPUs lack the memory bandwidth and functional units needed to 

exploit fine-grained parallelism. However, modern GPUs, like earlier SIMD systems, are designed to 

exploit massive fine-grained parallelism.  

     WRF contains a lot a different physics and dynamics options reflecting the experience and input 

of the broad scientific community. The WRF physics categories are microphysics, cumulus 

parametrization, planetary boundary layer, land-surface model and radiation. Explicitly resolved 

water vapor, cloud and precipitation processes are included in microphysics [21]. Earlier GPU work 

on WRF modules includes an older version of WSM5 microphysics portion of WRF model [22]. The 

Long-Wave Rapid Radiative Transfer Model (RRTM) component of the WRF code was ported to 

the GPU using CUDA Fortran [23]. Work has also been performed on GPUs to accelerate other 

weather forecasting models besides WRF. In [24], a next-generation Japanese production weather 

code was demonstrated to have a speedup of 80x using 528 GPUs. Dynamics routine of High 

Resolution Local Area Model (HIRLAM) has been accelerated by an order of magnitude in [25].  

Dynamics portion of Non-hydrostatic Isosahedral Model (NIM), a next-generation weather model 

was converted to run on a GPU and a speedup of 34x was achieved in [26]. GPU acceleration of 

radiance transfer computation, both for single profile and multi-profile processing were shown in [27] 

and [28] respectively. In this paper, we will accelerate a newer version of WSM5 on GPUs. 

     The rest of the paper is organized as follows. Section 2 describes WSM5 microphysics scheme. 

Section 3 explains the basics of CUDA computing engine for NVIDIA GPUs. In Section 4, the 



 

 
 

 

GPU-accelerated WSM5 microphysics scheme is explained. Section 5 has comparison of GPU 

results to the original Fortran code. Finally, Section 6 concludes the paper. 

2. WRF WSM5 CLOUD MICROSPHYSICS SCHEME 

     The WSM5 scheme predicts five categories of hydrometrics: water vapor, cloud vapor, cloud ice, 

rain and snow. Figure 1 depicts the different categories and production rates, which are explained in 

Table 1. WSM5 allows supercooled water to exist and a gradual melting of snow falling below the 

melting layer. The details of computational processes are described in [29][30]. 
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Fig. 1. Flowchart of the microphysics processes in the WSM5 scheme. 

 

 

 

 

 



 

 
 

 

 

Table 1. List of symbols in Fig. 1 

Symbol Description 

PCOND Production rate for condensation-evaporation of cloud water 

PIDEP Production rate for deposition sublimation rate of ice 

PIGEN Production rate for generation of ice from water vapor 

PRACW Production rate for accretion of cloud water by rain 

PRAUT Production rate for autoconversion of cloud water to form rain  

PREVP Production rate for accretion cloud ice by snow 

PSACI Production rate for accretion of rain by snow 

PSACW Production rate for accretion cloud water by snow 

PSAUT Production rate for autoconversion of cloud ice to form snow 

PSDEP Production rate for deposition-sublimation rate of snow 

PSEVP Production rate for evaporation of melting snow 

PSMLT Production rate for melting of snow from cloud water 

 

Condensation of water vapor to cloud water is expressed as  

𝑃𝐶𝑂𝑁𝐷 = (𝑞 − 𝑞𝑠𝑤) [∆𝑡 (1 +
𝐿𝑣

2

𝐶𝑝𝑚𝑅𝑉𝑇2
)], 

where cloud water evaporates, if q < qSW., which is saturated value with respect to cloud water, Δt is 

time increment, Lv
 is latent heat of condensation, Cpm is specific heat of moist air at constant pressure, 

RV is gas constant for water vapor and T is temperature. 

When air supersaturated with respect to ice, the growth rate of ice crystals by deposition of water 

vapor is 



 

 
 

 

𝑃𝐼𝐷𝐸𝑃 =
4𝐷𝐼(𝑆𝐼 − 1)𝑁𝐼

𝐴𝐼 + 𝐵𝐼
, 

where DI is cloud ice diameter, SI is saturation ratio over ice, AI and BI are thermodynamic terms. 

 

When temperature, T, is smaller than reference temperature, T0, and the air is supersaturated with 

respect to ice, the initiation rate of cloud ice from water vapor is  

𝑃𝐼𝐺𝐸𝑁 = 𝑚𝑖𝑛[(𝑞𝐼0 − 𝑞𝐼)/∆𝑡, (𝑞 − 𝑞𝑆𝐼)/∆𝑡], 

where qIo is mixing ratio of ice nuclei, qI is mixing ratio of ice crystal, q is mixing ratio of water 

vapor and qSI is saturated value with respect to ice. 

The growth rate of raindrop by accretion of cloud water is  
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where aR is 841.9 m/s,  ERC=1 is rain water collection efficiency, n0R =8ˑ106 is intercept parameter of 

rain, qc is mixing ratio of cloud water, Γ is gamma function, λr is a slope of rain size distribution, ρ0 

is air density at reference state, and ρ is air density. 

 

Production rate for auto conversion of cloud water to form rain  

𝑃𝑅𝐴𝑈𝑇 =
0.104𝑔𝐸𝐶𝜌0

4
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where H() is Heaviside step function, g=9.8 is gravitational acceleration, EC is mean collection 

efficiency, µ=1.718 ˑ10-5 is dynamic viscosity of air, NC is concentration of cloud water droplet, ρW 

is water density, qc is mixing ratio of cloud water and qc0 is critical mixing ratio of cloud water. 

The evaporation rate for rain is 
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where SW is saturation ratio with respect to water, AW and BW are thermodynamic terms, aR=841.9 

and µk is kinematic viscosity. 

The rate of accretion of cloud ice by snow is: 

3 2 2 12 ,
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where ESI, the collection efficiency of the snow for cloud ice, Vs is mass weighted fall speed of snow, 

VI is mass weighted fall speed of cloud ice, λS is a slope of snow size distribution and DI is cloud ice 

diameter.
 

 

The accretion rate of cloud water by snow is 
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where ESW =1 is the collection efficiency of the snow for cloud water and bs is 0.41. When T > T0, 

PSACW will contribute to form rain drop. 

 



 

 
 

 

The aggregation rate of ice crystals to form snow is:
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The depositional growth rate of snow is 
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where AI and BI are thermodynamic terms. 
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Production rate for melting of snow from cloud water is 

 

 

 

where Lf is latent heat of fusion and Ku is thermal conductivity of air. 
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3. GPU COMPUTING 

CUDA is an extension to the C programming language which offers a direct programming of the 

GPUs. It is designed such that its constructs allow for natural expression of data-level parallelism. A 

CUDA program is organized into two parts: a serial program running on the CPU and a parallel part 

running on the GPU. The parallel part is called a kernel. A CUDA program automatically uses more 

parallelism on GPUs that have more processor cores. A C program using CUDA extensions 

distributes a large number of copies of the kernel into available multiprocessors (MP) and executes 

them simultaneously. 

Figure 2 presents a schematic visualization of a GTX 590 GPU device. Each multiprocessor has 

32 CUDA cores and it executes in parallel with the other multiprocessors. Each multiprocessor has 

two groups of 16 CUDA cores. All sixteen cores in a group execute in a Single Instruction Multiple 

Data (SIMD) fashion with all cores in the same multiprocessor executing the same instruction at the 

same time. Each GPU has 1.5 GB of global memory, which has a higher bandwidth than the DRAM 

memory in the CPUs.  

The CUDA code consists of three computational phases: transmission of data into the global 

memory of the GPU, execution of the CUDA kernel and transmission of results from the GPU into 

the memory of CPU.   

Figure 3 presents a schematic visualization of a multiprocessor (MP). There are four special 

function units (SFU) inside each MP for single-precision floating-point transcendental functions. 

Each MP has 16 load (LD) / store (ST) units for memory access. Each MP also has 32768 32-bit 

registers which can be accessed in a single clock cycle. A nice introduction to the CUDA 

programming model can be found in [31]. 



 

 
 

 

CUDA takes a bottom-up point of view of parallelism in which a thread is an atomic unit of 

parallelism. Threads are organized into a three-level hierarchy. The highest level is a grid, which 

consists of thread blocks. A grid is a three-dimensional array of thread blocks. Thread blocks 

implement coarse-grained scalable data parallelism and they are executed independently, which 

allows them to be scheduled in any order across any number of cores. This allows the CUDA code to 

scale with the number of processors.  

 

Fig. 2.  Schematic visualization of a GPU device. 

Threads are executed in groups of 32 threads called warps. A CUDA core group inside a MP 

issues the same instruction to all the threads in a warp. When the threads take divergent paths, 

multiple passes are required to complete the warp execution. At each clock cycle, the MP schedules 
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a suitable warp for execution. The scheduling favors those threads whose next instructions are not 

waiting for a long-latency instruction such as global memory access. Overloading the MP with a lot 

of active threads allows the GPU to hide the latency of slow instructions. Global memory loads and 

stores by threads of a half-warp (16 threads). Different global memory accesses are coalesced by the 

device in as few as one memory transaction when the starting address of the memory access is 

aligned and the threads access the data sequentially. An efficient use of the global memory is one of 

the essential requirements for a high performance CUDA kernel. The other main issue to consider is 

to find enough data parallelism to keep all CUDA cores busy.  



 

 
 

 

 

Fig. 3.  Schematic visualization of a multi processor. 

4. GPU ACCELERATED WSM5 

4.1 The original Fortran code of WSM5 microphysics scheme 

Profiling graph of the original Fortran code on a CPU is shown in Fig. 4. Graphs nodes contain 

information about the total processing time in percent of a sub-graph rooted at the node, processing 

time at the node and number of times the subroutine is executed. Directed graph edges have 
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information about the percentage of the processing time spent on that specific subroutine call and the 

number of times the subroutine is called. In Table 2, the subroutines are explained. 

 

 

Fig. 4. Profiling graph of WSM5 microphysics scheme on a CPU. Graphs nodes contain information about the total processing time in percent of a sub-

graph rooted at the node, processing time at the node and number of times the subroutine is executed. Directed graph edges have information about the 

percentage of the processing time spent on that specific subroutine call and the number of times the subroutine is called. 

 

 

 

Table 2. Description of WSM5 microphysics subroutines 

Subroutine name Description 

wsm5 Preparation for microphysics computation. 

wsm52d 5-class mixed ice microphysics scheme of the Single-Moment MicroPhysics (WSMMP). 



 

 
 

 

nislfv_rain_plm Semi-Lagrangian forward advection for cloud with mass conservation and positive definite advection 2nd order interpolation 

with monotonic piecewise linear method. 

slope_wsm5 Distribution slope parameter computation 

slope_snow Calculation of the distribution slope parameter, based upon conservation of the snow mass predicted by simulated 

microphysical processes. 

slope_rain Distribution slope parameter for rain. 

 

4.2 Manual code translation of WSM5 from Fortran to standard C 

     As the original WRF code was written in Fortran 90, we ported the original WSM5 microphysics 

module from Fortran to CUDA C. As an intermediate conversion step, the original Fortran code was 

first rewritten using standard C. During Fortran to C conversion, some of the temporary arrays were 

replaced by scalar values, which are recomputed as needed. This was done keeping in mind that in 

GPUs it is faster to recompute values than to transfer them from relatively slower global memory. In 

other words, GPUs have higher computation to bandwidth capabilities than CPUs. The rewritten 

WSM5 code was verified against the Fortran code. After verification, C code was converted into 

CUDA C for data parallel execution on GPUs.  

 

4.3 Converting C code into CUDA C 

      To test WSM5 we used a CONtinental United States (CONUS) benchmark data set for 12 km 

resolution domain for October 24, 2001 [32]. A WRF domain is a geographic region of interest 

discretized into a 2-dimensional grid parallel to the ground. Each grid point has multiple levels, 

which correspond to various vertical heights in the atmosphere. The size of the CONUS 12 km 

domain is 433 x 308 horizontal grid points with 35 vertical levels. As shown in Fig. 5, the test 

problem is a 12 km resolution 48-hour forecast over the Continental U.S. capturing the development 

of a strong baroclinic cyclone and a frontal boundary that extends from north to south across the 



 

 
 

 

entire U.S.  For compiling Fortran code, we used default compiler options from WRF for gFortran: -

O3 -ftree-vectorize -ftree-loop-linear -funroll-loops.  
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Fig. 5. U.S. Forecast for 48 hours using 12 km resolution. Frame 32 of Vis5D animation. 

     WSM5 microphysics computation is organized into a 3-dimensional grid where the microphysical 

process computations in each column (k-dimension) are processed independently. Thus, there are 

two dimensions of parallelism (i- and j-dimensions) to work with. Data-parallelism is achieved by 

giving each thread a unique global index in the i- and j-dimensions of the domain using thread and 

block indices. The result of this thread mapping is that multiple threads are carrying out the same 

computation on different data in parallel. The major changes made to CUDA C code for increasing 

its speed are as follows: 

 On-chip fast memory was configured as 48KB of L1 cache and 16 KB of shared memory 

instead of default 16KB of L1 cache and 48 KB of shared memory. 



 

 
 

 

 Restricted pointers were used for global variables in order to alleviate the aliasing problem, 

which inhibits compiler certain types of compiler optimizations. With __restrict__ keywords 

added to the pointer arguments, the compiler can reorder and do common sub-expression 

eliminations. 

 Using register scalars instead of global memory arrays for storing temporary values. This 

process was applied to microphysical process variables listed in Table 1. In addition, several 

other temporary arrays were converted to scalars. Thus, their values would be recomputed 

using values in registers as needed instead loading a values from slower global memory.  

 Compiler option -use_fast_math was utilized for faster but less accurate computation. The 

option forces GPU code to use intrinsic mathematical function. Also, denormalized numbers 

are flushed to zero. In addition, less precise division and square root operations are used. 

 Three separate instances of slope function were written instead of using the same function for 

three separate function calls, which used only some of the output variables. 

        A CUDA C program distributes a large number of copies of the kernel into available 

multiprocessors to be executed simultaneously. Therefore, A CUDA program automatically uses 

more parallelism on GPUs that have more processor cores. This means that a lot of parallel threads 

have to be launched on GPU for effective parallel implementation. In order to achieve a high level of 

parallelism on a GPU we replaced the two outer loops by index computations using thread and block 

indices. Thus, the domain decomposition is such that each thread will compute values for all levels 

in one spatial position. This domain decomposition is illustrated in Fig. 6.  
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Fig. 6. Schematic visualization of the WSM5 microphysics domain decomposition. 

     Data-parallel nature of microphysics computation is illustrated in Fig. 7, which shows a block 

diagram of accretion of cloud water by rain (pracw). The same microphysics operation is performed 

for all the domain values at the same time in parallel. The C code of the process can be seen in Fig. 8.  
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Fig. 7. Block diagram of a data-parallel kernel snippet of accretion of cloud water by rain (pracw). 

          if(qr[I3(i,k,j)] > qcrmin && qc[I3(i,k,j)] > qmin) 

              pracw = min(pacrr * rslope3_0_r * rslopeb_0_r * qc[I3(i,k,j)] * denfac[I3(i,k,j)], qc[I3(i,k,j)] / dtcld); 

          else 

              pracw = 0.0f; 
Fig. 8. C code for accretion of cloud water by rain (pracw). 

     To evaluate the performance of the GPU accelerated WSM5, we ran our CUDA C code on GTX 

590. Specifications can be seen in Table 3. Each MP has a data cache, which is shared among the 

CUDA cores. The data cache can be configured as 16 KB software managed cache called shared 



 

 
 

 

memory and 48 KB hardware cache (L1) or the other way around. There is also 768 KB of level 2 

(L2) cache, which is shared among MPs. The CPU used in the tests was Intel i7 970 CPU running at 

3.20 GHZ. A reduction of processing time from 16928 ms on CPU to 52.8 ms without I/O on a GPU 

means that a speedup of 321x can be achieved. We used thread block size 64. The CUDA C 

compiler was version 4.1 release candidate 1. Also, the code was compiled for 32-bit architecture for 

faster execution. 

Table 3. Hardware specifications 

Number of CUDA cores per GPU 512 

Global memory bandwidth per GPU 164 GB/s 

Global memory per GPU 1.5 GB 

Frequency of CUDA cores 1.215 GHz 

Number of 32-bit registers per multiprocessor 32768 

L1 cache  16 KB / 48 KB 

L2 cache size per GPU 768 KB 

 

The achieved instruction per byte ratio for the kernel is 2.07. This ratio is the total number of instructions issued by the 

kernel divided by the total number of bytes accessed by the kernel from global memory. Balanced instruction ratio is 

defined as a ratio of the peak instruction throughput and the peak memory throughput of the CUDA device. For the GTX 

590 the balanced instruction ratio is 3.80 instructions per byte, which is more than the achieved instructions per byte.  

Hence, the kernel is memory bandwidth limited. 

4.4 Coalesced memory access 

     Recall that coalesced memory access happens when adjacent threads load or store data that in 

contiguous and aligned in memory. Because of CUDA’s coalescing rules, it is convenient to lay out 

memory in an array so that i-columns in the array start on 64 byte boundaries. Therefore, i-columns 

are padded with zeroes so that each i-column begins at a 64-byte boundary. Consequently, the full 



 

 
 

 

padded size of i-column dimension is increased from the original idim to pitch.  The other two array 

dimensions are kdim and jdim. Therefore, the stride between adjacent elements in i- dimension is 1, 

stride between adjacent elements in k-dimension is pitch and the stride between adjacent elements in 

j-dimension is pitch*kdim. The memory layout of 3D arrays is illustrated in Fig. 9. The memory 

layout for 2D arrays is similar, only k-dimension is removed. With coalesced memory access, the 

processing time is reduced from 52.8 ms to 43.5 ms. 

...

i

idim

pitch

k

j

 

                                                       Fig. 9. The memory layout of 3D-arrays. 

     The first GPU/CUDA based WSM5 microphysics (in WRFv3.1 version) was developed by 

Michalakes et al. of NCAR with a nearly 10x speedup on NVIDIA’s 8800 GTX.  Later a team in 

Alexandria University developed WRF v3.2 version of WSM5 microphysics [33] with a significant 

improvement in speedup. For fair comparison, we ran both our WSM5 GPU/CUDA code and 

Alexandria team's WSM5 GPU code on our NVIDIA GTX 590 GPU. As seen from speedup results 

in Fig. 10 our implementation of WSM5 on a GPU is faster than the other implementation because 

we scalarized more temporary arrays and used coalesced memory access pattern for global memory. 



 

 
 

 

 

Fig. 10. Speedups for WSM5 without I/O. 

4.5 Asynchronous data transfer 

     The other major difference between C and CUDA C version is the additional data transfer 

between CPU and GPU in CUDA C. In order to have simultaneous CUDA kernel execution and data 

transfer, we utilized streams. Stream can be seen as a command pipeline, which executes commands 

in first-in-first-out (FIFO) order. A diagram depicting the execution timeline of the WSM5 utilizing 

asynchronous data transfer to overlap CUDA kernel with data transfer is shown in Fig. 11.  

Host-to-device 

memory transfer

Copy engine Kernel engine

Ti
m

e

Host-to-device 

memory transfer

Host-to-device 

memory transfer

 Device-to-host 

memory transfer

 Device-to-host 

memory transfer

 Device-to-host 

memory transfer

CUDA 

kernel

CUDA 

kernel

CUDA 

kernel

 

389x

240x

0

100

200

300

400

Our Approach Alexandria Team



 

 
 

 

Fig. 11. Execution timeline of the WSM5 computation 

 

     The three streams operating at the same time are colored in orange and yellow and purple, 

respectively. During each kernel call to CUDA kernel, several rows of data are processes by the 

kernel. In Fig. 12, processing times are shown are a function of the number of rows. The presented 

processing times are without coalesced memory access. With coalesced memory access, the runtime 

is 106.5 ms compared to 95.1 ms without coalesced memory access. This anomaly is related to the 

current state of the NVIDIA device drivers and the behavior of the memory transfers of data 

allocated for coalesced memory access can change in the future.  

 

Fig. 12. Processing times [ms] for 1 GPU as a function of the number of rows transferred from CPU to GPU at a time. 

 

The optimal number of rows is 9. The speedups obtained for our implementation and the older GPU 

implantation are shown in Fig. 13. Our implementation is faster in this case as well.  

 

Fig. 13. WSM5 speedups with I/O. 
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4.6 Multi-GPU implementation 

     Multi-GPU implementation of WSM5 operates by computing several continuous j-dimension 

values in the arrays in the same GPU. For 2-4 GPUs the optimal number of j-dimension to transfer 

from CPU to GPU are 18, 10 and 13,  respectively. This drop in the number of rows is due to the fact 

that PCIe bus is becoming more heavily utilized as more GPUs are using it. Thus, smaller amount of 

data transfer is more optimal. 

     A set-up for two GTX 590 cards is shown in Fig. 14. In this set-up, there are two GPUs on one 

GPU card for total of four GPUs. When two GPUs on the same GPU card are transferring data at the 

same time, the total maximum bandwidth is almost the same as if only one GPU is transferring data.  

 

Fig. 14. Schematic diagram of multi-GPU setup 

 

     Table 4 lists the computation times for multi-GPUs. The corresponding speedups are depicted in 

Fig. 16. In the tests, when 2 GPU are used they are from the different GPU cards. Thus, the GPUs 
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are using separate GPU links and are not saturating the same link. Without I/O, the speedup 

increases linearly with the number of GPU. Thus, 4 GPUs have a speedup of 1556x. 

Table 4. Processing times with I/O for multi-GPU setup 

Number of GPUs Processing time [ms] 

1 82.1 

2 50.3 

4 47.3 

 

 

Fig. 15. WSM5 microphysics GPU speedups with I/O over serial CPU implementation. 

 

     Microphysics computation is just a small part of the whole WRF model. Given that we have very 

successfully GPU accelerated WSM5 microphysics scheme, we will continue to convert other WRF 

modules to CUDA C programming model. Once whole WRF has been rewritten using CUDA C, 

there will be no need to implement input/output transfers between CPU and GPU for each individual 

module. Instead, only inputs to the first WRF module have to be transferred from CPU to GPU. 

Similarly, only the outputs from the last WRF module will be transferred from GPU to CPU. 
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Therefore, we expect that the speedup for WSM5 in WRF GPU will be closer to results presented in 

this paper for speedups without I/O than with I/O. The future work includes evaluating Message 

Passing Interface (MPI) for connecting GPU workstations to form a GPU cluster for WRF 

computation. Also, other many-core programming environments in addition to NVIDIA’s CUDA 

will be considered. 

 

 

Fig. 16. WSM5 microphysics GPU speedups without I/O over serial CPU implementation. 

5. CONCLUSIONS 

 In this paper, we have presented results for GPU accelerated WSM5 microphysics scheme, which is 

extremely well suited for implementation on a graphics processor. The implementation achieves 

206x and 389x speedups with and without I/O using a single GPU as compared to the Fortran 

implementation running on a CPU.  These results represent a 60% improvement over the earlier 

GPU accelerated WSM5 module. The improvements over the previous GPU accelerated WSM5 

module were numerous. Some minor improvements were that we scalarized more temporary arrays 
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and compiler tricks specific to Fermi class GPU were used. The most important improvements were 

the use of coalesced memory access pattern for global memory and asynchronous memory transfers. 

Using 4 GPUs, the speedup was increased to 357x with I/O. Without I/O the speedup increases 

linearly with the number of GPUs. Thus, 4 GPUs have a speedup of 1556x.  Overall, the GPU 

version of WSM5 microphysics scheme was successful and achieved a significant performance 

increase as compared to the original CPU implementation. Thus, we believe that GPU computing is 

a viable way to accelerate WRF computation. 
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