
The Eta Model Dynamics, Part II:  

•  Pressure-gradient force, eta coordinate; 
•  Finite volume vertical advection of v, T 



1. Vertical coordinates with quasi-horizontal 
 surfaces, e.g., eta: 

  Why?  



The sigma system PGF problem 
In hydrostatic systems: 

€ 

−∇ pφ →−∇σφ − RT∇ ln pS
The way we calculate things, in models, 

                    

Thus:  PGF depends only on variables from the ground up to    
the considered p=const surface ! 

We could do the same integration from the top; but: we measure the 
surface pressure, thus, calculation “from the top” not an option ! € 

φ =φS −Rd Tv
pS

p

∫ d ln p

In nonhydrostatic models:  very nearly the same 



 The best type of sigma scheme:  
will depend on Tj +1/2,k +1, which it should not; 
will not depend on Tj -1/2,k -1, which it should. 

Example, continuous case: 
PGF should depend on, 

and only on, 
variables from the ground 
up to the p=const surface: !
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Since the problem is one of missing information/ 
using information which should not be used:  

the error can be arbitrarily large !  

•  Can increased resolution help?  If both vertical and 
horizontal increase at the same time, e.g., both doubled, no 
change.  But if the steepness of the topography increases, 
which is a standard thing to do: it gets worse !  Thus:  NO 

•  Can increased formal (Taylor series) accuracy help:  NO 

•  Can reduction in the magnitude of the two PGF terms 
help?  (Two “big” terms of opposite signs: subtract 
“reference atmosphere”):  NO 

Thus: vertical coordinate with quasi-horizontal surfaces !  



Thus: 
          Norman Phillips (1957)  “sigma”: 	


€ 

σ =
p
pS

( Or, later, 

€ 

σ =
p− pT
pS − pT

) 

Mesinger (1984)  “eta”: 

€ 

η =
p− pT
pS − pT

ηS , ηS =
prf (zS ) − pT
prf (0) − pT

(Arakawa ?) 



“Step-topography” eta:!



Downsides?  #1:  
Poor vertical resolution over higher topography?  Well, 

OK, yes.  But very high vertical resolution (sigma) not ideal 
either.  Hybrid vertical coordinates (moving to pressure 

faster than with simple sigma):  things are improved 
around the troposphere and higher up, but layers over 

high topography get thinner still. 
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#2:  
The flow down the slopes noticed to have been in some 
situations not realistic – tendency for flow separation.  

Wasatch downslope windstorm, Gallus, Klemp (MWR 
2000), a case of Santa Ana wind.  But a zonda case (Conf. 
Southern Hem. Meteor. Ocean. 1966, another later here) 

done adequately. 



Gallus, Klemp, 
MWR 2000, 
Fig. 6 (a), 
horizontal 
velocity 

(“Witch of Agnesi” mountain) 



Acklowledgement:  Wikipedia, Merrill!

“Witch of Agnesi”: 



Studied by:  Pierre de Fermat, 1630, Guido Grandi, 1703, Maria Agnesi, 1748!
In Italian:  la versiera di Agnesi (“the curve of Agnesi”)!

Cambridge professor John Colson:  “l’avversiera di Agnesi” (“woman 
contrary to God”), identified as “witch”, mistranslation stuck !!



Suggested explanation !
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Flow attempting to move from 
box 1 to 5 is forced to enter box 2 

first.	

Missing: slantwise flow directly 

from box 1 into 5 !	

As a result:  some of the air which 

should have moved slantwise 
from box 1 directly into 5 gets 

deflected horizontally into box 3.	




Remedy:  The sloping steps, vertical grid 
The central v box exchanges momentum, on its right side, with v boxes 
of two layers: 



Horizontal treatment, 3D 
Example #1:  topography of box 1 is higher than those of 2, 3, and 4; 
“Slope 1”  

Inside the central v box, topography descends from the center of T1 box 
down by one layer thickness, linearly, to the centers of T2, T3 and T4 



Example of slopes with an actual model topography: !



The Eta Problem:  before 
Flow separation on the lee side (à la Gallus and Klemp 2000) 



After:  Emulation of the Gallus-Klemp experiment, 
Sloping steps code (“poor-man’s shaved cells”), corrected: 

Velocity at the ground immediately behind the mountain increased from between  
1 and 2, to between 4 and 5 m/s.  “lee-slope separation” much reduced. 

 Zig-zag features in isentropes at the upslope side removed. 



Acknowledgement: 
. . . 

A real data experiment: 

 Zonda case of 
11-12 July 2006 



Initial condition:  1200 UTC 10 July 2006 

24 h 33 h 

T change in the San Juan area from < 284 K to > 296 K ! 



•  Benefit from the quasi-horizontal, e.g., eta, 
vs sigma coordinate:  

Quite a few (4-5?) tests using the switch 
eta/ sigma. 

All very convincingly favoring the eta ! 

The very first: 



Sigma Eta 



Some addressing 
precipitation scores, 

e.g.,	

André Robert	


Memorial Volume:	




Note also: 

Russell, G. L., 2007: Step-mountain technique 
applied to an atmospheric C-grid model, or how to 
improve precipitation near mountains. Mon. Wea. 
Rev., 135, 4060–4076.!
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A number of tests on positions of low centers, such 
as in the lee of the Rockies…  The most recent one: 



Eta (left), 22 km, switched to use sigma (center), 48 h position 
error of a major low increased from 215 to 315 km : 

~ Just as in earlier experiments at lower resolution 



Examples which are not clear tests of one or the other 
feature, but for which it can be hopefully convincingly 
argued that the main contribution to the success does 
come from one (the quasi-horizontal coordinate) or 

both of the preceding features: 

•  Precipitation scores.  Not a direct test, but in many 
comparisons over the years the Eta at NCEP was each 
time outperforming NCEP's sigma system models, over 

land.  Examples: the last 12 months of three model scores: 
GFS, NMM, Eta (in Mesinger 2008), Parellel: Eta system/ 

NMM system; 
•  The three low centers case; 



Eta 
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Forecast, Hits, and Observed (F, H, O ) area, 
                               or number of model grid boxes: 

Most popular “traditional 
statistics”:   

ETS (Equitable Threat 
Score), Bias: 

€ 

ETS =
H −FO /N

F +O−H −FO /N

€ 

Bias = F /O



Problem:  what does the ETS tell us ? 

“The higher the value, the  better the model skill 
is for the particular threshold” 

(a recent MWR paper)  

? ? 
An apparently popular view, but in fact wrong, since 

ETS can be increased by increasing the bias 
beyond unity  



Methods to correct for bias: 

Hamill, T. M.: 1999: Hypothesis tests for evaluating numerical 
precipitation forecasts. Wea. Forecasting, 14, 155–167;!

Mesinger, F., 2008: Bias adjusted precipitation threat scores. 
Adv. Geosciences, 16, 137-143. [Available online at http://
www.adv-geosci.net/16/137/2008/adgeo-16-137-2008.pdf.]!



“dHdA” 
method: 
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Assume as F is increased by dF, ratio of the 
infinitesimal increase in H, dH, and that in false 

alarms dA=dF-dH, is proportional to the yet 
unhit area: 

F : forecast, 
H : correctly      

 forecast: “hits” 
O : observed 



€ 

b = const

Differential equation, can be solved  
(Mathematica, or  MATLAB) 

H (F) obtained that now satisfies an additional 
requirement of dH/dF  never > 1 

€ 

dH
dA

= b(O−H)



H(F)	


H = O	


H = F	


Fb , Hb	
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dHdA method 



ETS corrected for bias 

East West 

Correction for bias: Mesinger (Adv. Geosci. 2008):  In order 
to obtain score that verifies placement of precipitation ! 

Eta 
GFS 

NMM 



An example of 
precip at one 

of such events: 
(8 Nov. 2002, 
red contours: 

3 in/24 h) 

An 
extraordinary 

challenge to do 
well in QPF 

sense ! 



More recent results – comparison of Eta against the 
WRF-NMM, but with WRF-NMM using a new data 

assimilation system (from DiMego 2006) 

Unfortunately, no correction for bias – not needed if 
biases are about the same 



24 h 36 h 
Eta 

NMM 
ETS 

Bias 



48 h 60 h 



72 h 84 h 

(From DiMego 2006) 



The three low 
centers case 

Valid at 
12z 18 September 2002	
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HPC analysis 



Avn, 60 h fcst 

HPC analysis 

Eta, 60 h fcst 



Other model “families”: 
 RAMS, MM5, NCAR WRF, . . .   

Among models using or having an option to use 
  quasi-horizontal (eta or eta-like) coordinates : 

•  Univ. of Wisconsin (G. Tripoli); 
•  RAMS/OLAM (C. Tremback; R. Walko); 
•  DWD Lokal Modell (LM: Steppeler et al. 2006);  
•  MIT, Marshall et al. (MWR 2004); 
•  NASA GISS (NY), G. Russell, (MWR 2007) 

Apparently increasing as time goes on ? 



Vertical advection of v, T:   
“Standard” Eta: centered Lorenz-Arakawa, e.g.,  

€ 

∂T
∂t

= ...− ˙ η 
∂T
∂η

η

E.g., Arakawa and Lamb (1977, “the green book”, p. 222).  Conserves 
first and second moments (e.g., for u,v: momentum, kin. energy). 

There is a problem however:  false advection occurs from below 
ground.  Replaced with a piecewise linear scheme of Mesinger and 

Jovic (2002) 



From Mesinger and Jovic : 

Figure 1.   An example of the Eta iterative slope adjustment algorithm.  The initial distribution is 
illustrated by the dashed line, with slopes in all five zones shown equal to zero.  Slopes resulting 
from the first iteration are shown by the solid lines.  See text for additional detail. 

Dashed: original 
distribution 

Solid: after 1st 
iteration 



Mesinger, F., and D. Jovic, 2002:  The Eta slope adjustment: 
Contender for an optimal steepening in a piecewise-linear advection 
scheme? Comparison tests.  NCEP Office Note 439, 29 pp (available 
online at http://www.emc.ncep.noaa.gov/officenotes).	


A comprehensive study of the Eta piecewise linear scheme 
including comparison against five other schemes (three Van 
Leer’s, Janjic 1997, and Takacs 1985): 

Most accurate; only one of van Leer’s schemes comes close! 



E.g., the 
comparison 

against 
Takacs 
(1985) 

third-order 
scheme: 



The nonlinear case 

€ 

− ˙ η 
∂T
∂η

= T ∂
˙ η 

∂η
−
∂( ˙ η T )
∂η

Concluding remark:  since piecewise-linear advection of 
dynamic variables replaces the only remaining purely finite-

difference scheme, and since with the eta coordinate 
horizontal sides of neighboring grid cells are very nearly of 

the same area, this makes the Eta very nearly a finite-
volume model.  Recall though that many Eta dynamical core 
features are not achieved in standard finite-volume models. 
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